Identification of three cysteines as targets for the Zn2+ blockade of the human skeletal muscle chloride channel.
نویسندگان
چکیده
Currents through the human skeletal muscle chloride channel hClC-1 can be blocked by external application of 1 mM Zn2+ or the histidine-reactive compound diethyl pyrocarbonate (DEPC). The current block by Zn2+ strongly depends on the external pH (pKa near 6.9), whereas the block by DEPC is rather independent of the pH in the range of 5.5 to 8.5. To identify the target sites of these reagents, we constructed a total of twelve cysteine- and/or histidine-replacement mutants, transfected tsA201 cells with them, and investigated the resulting whole-cell chloride currents. The majority of the mutants exhibited a similar sensitivity toward Zn2+ or DEPC as wild type (WT) channels. Block by 1 mM Zn2+ was nearly absent only with the mutant C546A. Four mutants (C242A, C254A, H180A, and H451A) were slightly less sensitive to Zn2+ than WT. Tests with double, triple, and quadruple mutants yielded that, in addition to C546, C242 and C254 are also most likely participating in Zn2+-binding.
منابع مشابه
Effects of ionic parameters on behavior of a skeletal muscle fiber model
All living cells have a membrane which separates inside the cell from it's outside. There is a potential difference between inside and outside of the cell. This potential difference will change during an action potential. It is quite common to peruse action potentials of skeletal muscle fibers with the Hodgkin-Huxley model. Since Hodgkin and Huxley summarized some controlling currents like inwa...
متن کاملبررسی جهش در اگزون 8 ژن CLCN1 در بیماران ایرانی مبتلا به میوتونی غیر دیستروفیک
Background: Non-dystrophy myotonias (NDMs) have similar clinical signs of muscle weakness and congenital myotoniais typical example. This disease is caused by mutations in CLCN1 gene. CLCN1 gene has 23 exons and exon 8 is hotspot. Mutations in skeletal muscle chloride channel gene are associated with a group of clinically overlapping diseases by alterations in the excitability of the sarcolemma...
متن کاملCalixmexitil: Calixarene-based Cluster of Mexiletine with Amplified Anti-myotonic Activity as A Novel Use-dependent Sodium Channel Blocker
Mexiletine as the first choice drug in myotonia treatment is a chiral sodium channel blocker clinically used in its racemic form. The phenolic structure of this drug, prompted us to design its novel calix[4]arene-based cluster in a chalice-shaped structure. Therefore, the present study reports the synthesis and in-vitro anti-myotonic activity of the chalice-shaped cluster of mexiletine...
متن کاملCalixmexitil: Calixarene-based Cluster of Mexiletine with Amplified Anti-myotonic Activity as A Novel Use-dependent Sodium Channel Blocker
Mexiletine as the first choice drug in myotonia treatment is a chiral sodium channel blocker clinically used in its racemic form. The phenolic structure of this drug, prompted us to design its novel calix[4]arene-based cluster in a chalice-shaped structure. Therefore, the present study reports the synthesis and in-vitro anti-myotonic activity of the chalice-shaped cluster of mexiletine...
متن کاملA Novel Missense Mutation in CLCN1 Gene in a Family with Autosomal Recessive Congenital Myotonia
Congenital recessive myotonia is a rare genetic disorder caused by mutations in CLCN1, which codes for the main skeletal muscle chloride channel ClC-1. More than 120 mutations have been found in this gene. The main feature of this disorder is muscle membrane hyperexcitability. Here, we report a 59-year male patient suffering from congenital myotonia. He had transient generalized myotonia, which...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 274 17 شماره
صفحات -
تاریخ انتشار 1999